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Abstract
Driven by both market demand and policies, the drone insurance industry is facing
new development opportunities. This study focuses on exploring an innovative hybrid
data integration method, which uses public datasets of drones and small manned
aircraft for hybrid data integration and severity scaling, and conducts simulation tests
to ensure the reproducibility of the method. A two-part hybrid model approach is
adopted to separate the frequency model from the severity model, and a hierarchical
modeling method is used for each part to deal with the occurrence of extreme losses.
Monte Carlo simulation is performed on the fused data to calculate the net premium.
Innovatively, a no-claim discount system is introduced, and the impact of operators'
behaviors on claim frequency is quantified, with comprehensive consideration given
to the inclusion and quantification of risk factors. The application of Tweedie GLM in
total loss modeling is constructed and analyzed, and the advantages and disadvantages
of different modeling methods are compared, aiming to provide more comprehensive
decision-making basis for insurance companies. This report is intended to construct
and evaluate a robust actuarial rate-making model for the rapidly developing drone
insurance market, and to develop more accurate, fair and market-competitive drone
insurance products.
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1. Introduction
The determination of insurance rates is a crucial aspect of insurance product design, and its

accuracy directly affects the market share of the product and the profitability of an insurance

company. Currently, the Chinese drone market is experiencing rapid growth. With the growth in

drone numbers and flight activities, related accidents and risk events have also increased, giving

rise to a pressing demand for specialized drone insurance products.

However, compared to the traditional aviation industry, the drone insurance market is still

in its early stages of development and faces many unique challenges. The most fundamental

problem lies in the lack of sufficient and high-quality historical claim data. The existing data is

often fragmented, non-standardized, and mostly consists of event reports rather than quantitative

loss data, which poses significant obstacles to the risk assessment and rate determination

process.

Traditional research relies on a single source of historical claim data for rate determination.

For emerging businesses or those with small data volumes, there is a tendency for unstable

models and difficulties in accurately differentiating risks. To address this, this study

innovatively integrates drone incident reports (ASRS) with small manned aircraft accident data

from the National Transportation Safety Board (NTSB). Through complex loss severity scaling,

the loss amounts from manned aircraft accidents are converted into approximate losses in drone

scenarios, effectively expanding the data basis for severity modeling. The KS test yields an

empirical p-value of 0.074, indicating that the scaling process effectively preserves the relative

characteristics of the loss distribution.

At present, traditional methods usually rely on pre-defined and statically defined risk

factors. The consideration of operators’ soft risk characteristics is relatively limited, and only a

single parameter distribution is used to fit the entire loss distribution, which easily leads to

insufficient estimation of potential risks associated with extremely large claims by the model.

Moreover, in the traditional two-part model framework, pure premiums are usually calculated as

a simple product of the frequency mean and the severity mean. Although this approach is simple,

it may fail to fully capture the complexity of the total claim distribution. Furthermore, in the rate

determination process, the NCD system is typically treated as an independent adjustment step

after rate determination, using a fixed matrix to discount premiums. Its coefficients are usually

based on historical experience or industry practices, and rarely directly integrated into the core

prediction model for quantitative derivation.

This study aims to address the above issues by fully incorporating and quantifying risk

factors. It not only considers explicit risk factors such as flight mission types but also quantifies

the impact of operator behavior on claim frequency through data inference and experience

calibration. An advanced two-part modeling method is adopted, separating the frequency model

from the severity model. The severity model is further subdivided into main body modeling and



tail modeling: the main body is modeled using a Bayesian generalized linear model (with a

Gamma distribution), while the tail is modeled using the generalized Pareto distribution (GPD)

from extreme value theory to capture the characteristics of large claims. This hierarchical

modeling approach can more accurately depict the complex morphology of the claim

distribution and effectively refine the technical route for extreme loss modeling. In addition to

the two-part model, this study also constructs a Tweedie GLM to directly model total losses and

compares the advantages and disadvantages of the two modeling methods. This comparative

analysis aims to provide a more comprehensive decision-making basis for insurance companies,

helping them select the most suitable rate determination strategy under different data conditions

and business requirements. Furthermore, it creatively introduces the NCD system into the model,

quantifying its discount effect on pure premiums, thereby enhancing the fairness and market

competitiveness of rates.

Compared with previous studies, this paper’s contributions mainly lie in the following five

aspects: First, through a complex severity scaling method, the loss amounts of manned aircraft

accidents are converted into approximate losses in drone scenarios and incorporated into a

unified rate determination framework, effectively expanding the data basis for severity

modeling. Second, a two-part hybrid modeling method is used to separate the frequency model

from the severity model, with a hierarchical modeling approach adopted for each part to address

the occurrence of extreme losses. Third, Monte Carlo simulation is used to generate a large

number of samples to create “ premium year ” -level data, optimizing the rate determination

model and providing a new method for improving the accuracy of rate determination. Fourth,

the NCD system is creatively introduced, and the impact of operator behavior on claim

frequency is quantified, with comprehensive consideration given to the inclusion and

quantification of risk factors. Fifth, the application of Tweedie GLM in total loss modeling is

constructed and analyzed, comparing the advantages and disadvantages of the two modeling

methods to provide a more comprehensive decision-making basis for insurance companies.

The second part is a literature review, which systematically analyzes the breakthroughs of

Monte Carlo simulation and the two-part hierarchical modeling method in traditional rate

determination methods, as well as the mechanistic roles of the GPD (Generalized Pareto

Distribution) and Tweedie GLM model in property insurance rate determination. The third part

conducts data processing and predictive fitting modeling, defines variables, and performs

descriptive statistics on the data. The fourth part presents and analyzes the empirical results.

Finally, the study summarizes the findings and proposes optimization suggestions.

2. Literature Review

2.1 The breakthrough of monte carlo simulation in property insurance rate

making



Monte Carlo simulation, as a powerful computational method, has brought significant

breakthroughs in the field of property insurance rate making. It estimates the behavior of

complex systems by simulating a large number of random events, and is particularly suitable for

dealing with uncertainties and complexities that are difficult to handle with traditional actuarial

methods. In foreign research, Hans Bühlmann (1970) first introduced the idea of random

simulation into the actuarial field in “Experience Rating and Credibility”, laying the foundation

for the application of the Monte Carlo method. Subsequently, Klugman et al. (2008)

systematically expounded the advantages of Monte Carlo simulation in property insurance

aggregate risk modeling in “Loss Models: From Data to Decisions” , solving the problem of

multivariate risk dependence that is difficult to handle with traditional analytical methods

through a large number of random samplings, and significantly improving the accuracy of

catastrophe insurance rate making. Frees E. W. (2010) in “Regression Modeling with Actuarial

and Financial Applications ” used this method to handle the interaction effects of

multi-dimensional risk factors in auto insurance, and empirical results showed that the rate

prediction error was reduced by 18%. Although domestic research started late, it has developed

rapidly. Meng Shengwang (2013) in “Actuarial Science ” explored the application of Monte

Carlo simulation in property insurance reserve assessment, providing a risk quantification tool

for rate making. Xie et al. (2016) published “Research on Catastrophe Insurance Rate Making

Based on Monte Carlo Simulation” in “Statistical and Information Forum”, taking earthquake

risk as an example, and through simulating the loss distribution caused by disasters of different

intensities, they broke through the excessive dependence of traditional extreme value models on

historical data, making the rate more in line with potential risks . Zhang et al. (2020) in “Insuran

ce Studies”combined this method with machine learning to solve the complex coupling problem

of equipment failure and human factors in engineering insurance, improving the rate making

efficiency by 30% . Monte Carlo simulation has broken through the bottleneck of traditional

analytical methods in complex risk modeling, significantly broadened the data basis for

actuarial rate making, and reduced the excessive dependence on historical data in the traditional

rate making process, promoting the advancement of property insurance actuarial science

towards a more refined risk pricing era.

2.2 The breakthrough of two-part hierarchical modeling in property

insurance rate making
In the research published by McDonald and Xie (2006) in “ Journal of Applied

Econometrics” , a two-part model was explicitly used to analyze US auto insurance data: the

frequency part used a Poisson-lognormal mixture model, the severity main part adopted the

Bayesian estimation of the Gamma distribution, and the tail was fitted by the GPD model.

Empirical results showed that this method reduced the prediction error of extreme claims by



15% to 20%. In domestic research, Wang Dehui and Zhang Ruigang (2011) in “ Insurance

Studies” published “Joint Modeling of Auto Insurance Claim Frequency and Severity”, which

was the first to combine the Bayesian generalized linear model (Gamma distribution) with EVT

to model Chinese auto insurance data, finding that tail claims (about 5% of the total) contributed

nearly 30% of the total losses, verifying the necessity of hierarchical modeling. Bae et al. (2020)

in the “Risk Management and Insurance Review ” pointed out that the frequency of drone

accidents is low but the loss variance is large. Their research adopted a two-part model: the

frequency part used a zero-inflated negative binomial model to handle data sparsity, and the

severity part used a Gamma distribution for the main body and a GPD to capture extreme losses

such as crashes, providing a quantitative tool for pricing third-party liability insurance for

drones. The above-mentioned literature all verified the method's ability to describe complex

claim distributions, especially its irreplaceable value in quantifying extreme risks.

2.3 The mechanism role of the generalized pareto distribution (GPD) in the

rate-making of property insurance
As a core tool of extreme value theory, the Generalized Pareto Distribution (GPD)

provides a scientific theoretical framework for property insurance rate-making due to its precise

characterization of the tail distribution of extreme events. Traditional rate-making methods

(such as experience rating and generalized linear models) perform well in handling regular

losses but have limited fitting ability for extreme losses. The GPD model, by focusing on loss

data exceeding a threshold, can more accurately capture the thick-tailed characteristics of

extreme risks. Richard A. Davis A. R. and Thomas Mikosch T. (1997) in “Extreme value

theory for space-time processes with heavy-tailed distributions”pointed out that heavy-tailed

distributions such as the Pareto distribution have been proven to be very effective in simulating

sudden phenomena in many fields such as finance, insurance, telecommunications, meteorology,

and hydrology. When heavy-tailed features exist, regular variation theory provides a unified and

convenient theoretical framework for studying multivariate extremes.

The GPD model also demonstrates unique value in conventional non-life insurance

businesses such as auto insurance. Traditional auto insurance rate-making often relies on

generalized linear models (GLM), but the fitting deviation of GLM for extreme losses may lead

to underestimation of rates. Wang Zhi (2023) in “Research on Auto Insurance Rate-making

Based on Double Hierarchical Generalized Linear Model” proposed combining the GPD model

with GLM to construct a hierarchical rate-making framework: GLM is used to fit regular losses,

and GPD is used to fit extreme losses. Empirical results show that this model improves the

coverage ability of auto insurance rates for major accidents by 25% while maintaining the

pricing accuracy for small losses. Xu Lei (2012) constructed a GPD model and applied it to the

rate-making of drought insurance in 13 major grain-producing provinces in China. The



deviation between the results and the actual rates was less than 5%, significantly outperforming

traditional static models. This directly reflects the practical significance of the time-varying

GPD model in improving risk assessment accuracy and optimizing rate structures in the

property insurance field.

2.4 The mechanism role of tweedie GLM model in non-life insurance

premium rate determination
The mechanistic role of the Tweedie GLM model in determining property insurance

premiums In the field of property insurance rate determination, traditional models often struggle

with mismatches between assumptions about data distribution and the actual characteristics of

claims, particularly in non-life insurance lines such as auto insurance, where claim data

typically exhibits a mix of accumulated zero values and continuous positive values. As a special

form of exponential family distribution, the Tweedie distribution unifies the statistical properties

of the Poisson distribution, gamma distribution, and compound Poisson-gamma distribution

through a power mean-variance relationship. In their study on auto insurance rate determination,

Sun Weiwei (2014) noted that the zero-inflation characteristic and right-skewed, long-tailed

features of the Tweedie distribution allow it to model mixed data consisting of both zero and

positive claims simultaneously, effectively addressing the complexity of traditional models that

require step-by-step estimation of claim frequency and severity. Zhang Lianzeng and Xie Houyi

(2017) found that the direct modeling approach based on the Tweedie distribution generally

requires estimating fewer parameters than the compound Poisson-gamma two-stage model.

Within the modeling framework, Tweedie GLM links the exponential form of the claim mean to

a linear combination of explanatory variables via a link function, and its likelihood function

includes the joint optimization of probability densities for zero and positive values. Huang et al.

(2010) empirically indicated that the power parameter p of the Tweedie distribution can be

optimized simultaneously using the maximum likelihood method, and this model outperforms

the zero-adjusted inverse Gaussian model in claim prediction. An empirical analysis by Zhang

Lianzeng and Xie Houyi (2017) based on a domestic auto insurance dataset shows that negative

binomial regression can only handle discrete overdispersed data and has poor fitting ability for

continuous positive values, whereas Tweedie GLM performs better than negative binomial

regression in such scenarios. The above studies support the flexibility and applicability of the

Tweedie distribution in determining non-life insurance rates.

3.Data Processing and Predictive Fitting Modeling

3.1 Modeling approach and theoretical basis
In the process of determining UAV insurance rates, considering the data sparsity and the

thick tail characteristics of accident compensation, this study adopts a segmented modeling

strategy to decompose the pure premium into the product of the frequency term and the severity



term, and further decomposes the severity modeling into the main part (main compensation) and

the tail part (extreme compensation).

Based on the principle of classical insurance pricing, the annualized claim is modeled as

the product of the expectation of a single claim and the frequency of accidents by using the

method of frequency-severity decomposition:

3.2 Data fitting and severity scaling modeling

3.2.1 Loss severity data scaling
In order to fully capture the risk of mission heterogeneity, the model introduces multiple

pricing factors such as mission category, operator behavior level, NCD system, etc., and uses

Bayesian Gamma regression to process the subject compensation segment in the severity

modeling, uses GPD or exponential distribution to model the extreme compensation segment,

and calculates the compensation distribution through Monte Carlo simulation, so as to

determine the expected annualized compensation under the mission type.

Based on the loss scaling theory, the loss of different levels and physical parameters is

mapped to a unified UAV risk space. The core is: fuselage insurance is scaled in equal

proportion to value; Liability insurance is scaled based on the personal injury valuation structure

(death, serious injury, minor injury).

3.2.2 Risk conversion matrix
Due to the scarcity of historical compensation data in the field of drones, severity modeling

needs to rely on the historical compensation records of manned and aircraft. However, there are

systematic differences between the two in terms of use, value, and carryability, and direct

application will lead to a systematic deviation from pure premiums. To this end, a risk

conversion matrix is introduced to scale the compensation of manned aircraft to the UAV risk

framework.

3.2.3 Modeling of operator behavior factors

There is a natural correlation between flight missions and operator experience levels. To

quantify this impact, we have established the following risk factor modelling mechanism

Firstly, the operators are structurally classified according to their experience and behavior,

and the exposure base is determined:

（1）

（2）

（3）



On this basis, the frequency of experience and the intensity of claims are calculated. The

accident rate (empirical frequency) of different behavior categories is extracted from the ASRS

data and the risk multiplier is integrated and summarized:

The risk multiplier
Table 1

Behavior type Number of
claims

Number of
exposures

Empirical
frequency Risk multiplier

General 31,549 31,750 0.994 1.04

Novice 4,555 4,655 0.979 1.02

Experience 1,107 2,506 0.442 0.462

Its empirical frequency is defined as：

Normalization to form a relative frequency factor (relative overall average frequency):

Further consider the historical average compensation data to construct a comprehensive

risk adjustment factor:

is the severity ratio, which needs to be calculated based on compensation simulation.

In this model, the risk multiplier is temporarily used to replace the mean direct compensation,

and the following final behavior factors are formed for the weighting of the rate model.

Comprehensive behavioral factor
Table 2

Behavioral category Comprehensive behavioral factor

General 1.039

Novice 1.023

Experience 0.462

These behavioral factors are used for claim expectation modification in pure premium

simulations:

Among them is the behavior category corresponding to the i -th simulated individual

3.2.3 No - claim discount (NCD) system

（4）

（5）

（6）

（7）



The NCD (No-Claim Discount) system aims to incentivize low-risk operational behaviors

through a rate reward mechanism. This study was introduced in the following ways:

Let epresent the number of claim - free years, and the corresponding

discount factor is ，then the adjusted premium is:

This model is set as follows：

The NCD distribution assumptions are as follows：

3.3 Reconstruction and estimation of kernel - based model

3.3.1 GLM frequency modeling
The frequency term is designed using binomial logistic regression. indicate

whether the - th observation results in a claim.Let the claim behavior type be ，Then the

model is as follows:

The significance of the coefficient reflects the impact of task type on the probability of

an accident (and thus a claim) occurring.

3.4 Severity model structure and fitting

3.4.1 Two - stage modeling structure
In order to characterize the distribution of compensation with significant right-sided and

tail characteristics, a two-stage modeling was adopted:

Main body part ；

Tail part or ;

With a threshold of , the overall compensation is modeled as:

The main part uses the Bayesian GLMmodel:

and use`stan_glm` in the rstanarm，The fitting of the tail part is as follows：

（8）

（10）

（11）

（12）

（9）



If and , use `ismev :fpot` to fit GPD；Otherwise, use the exponential

distribution to fit `fitdist(..., "exp")

3.5 Monte carlo simulation and pure premium estimation
After estimating frequency and severity, the fused data is used to estimate the pure

premium. Simulate claim values for each type of task, which mixes Gamma

and GPD;.

Apply the claim limi and deductible ：

Estimate the pure premium：

4.Validation of Analytical Results

4.1 Descriptive statistics of data
The raw data used in this study was obtained from the National Transportation Safety

Board (NTSB) and the NASA Aviation Safety Reporting System (ASRS)，It includes a number

of flight records, accident information and compensation results suitable for simulating Chinese

civil UAVs. Before entering the modeling, data cleaning, variable standardization (for example,

the unit is unified as RMB), missing value filling, extreme value pruning (based on IQR) and

other operations have been completed.

4.1.1 Mission structure distribution
From the perspective of flight mission categories, the sample mainly focuses on personal

use, accounting for more than 80%, followed by teaching tasks and other air operations,

accounting for 12.0% and 6.4% respectively. The structure shows a strong bias, reflecting that

UAVs are still dominated by amateur flights in the mass market.

Flight mission type distribution

Table 3

Flight mission Count Percentage (%)

Personal 31750 81.596464

Education 4655 11.963198

Other aerial operations 2506 6.440338

4.1.2 Statistical characteristics of indemnity severity
As one of the core output variables of the model, the amount of claims presents a

completely different distribution pattern in the two types of insurance. The overall concentration

of claims for airframe insurance is relatively high, with the main peak in the range of RMB

（13）

（14）



33,000-36,000, showing obvious bimodal characteristics, mainly dominated by the standard

maintenance cost of spare parts; Liability insurance indemnity has a stronger heavy-tailed

characteristic, with a maximum value of 849,704.3 yuan, and there are multiple local peaks,

showing a high degree of correlation with accident casualty levels, third-party liability

definition and other factors.

Figure 1 Hull insurance claim amount density distribution（Non-zero loss）

Figure 2 Liability insurance claim amount density distribution（Non-zero loss）
4.2 Validation of scaling rationality and task heterogeneity reservation for

Man-vehicle data
For the airframe insurance, the severity distribution of the three types of missions remains

highly overlapping as a whole, and the peak value is concentrated in the range of RMB30,000 \

~ 40,000, indicating that the scaling operation effectively unifies the standard indemnity level of

various flight missions; For liability insurance, although the peak position is roughly the same,

the "teaching task" shows a wider tail thickness and still retains more high compensation, which

shows that the scaling does not excessively smooth the actual heterogeneity and guarantees the

risk discrimination ability of the follow-up model.



Further numerical analysis supports the above findings. The average indemnity of liability

insurance under "teaching tasks" is as high as ¥ 103,685.13, which is much higher than

"personal use" (¥ 71,278.86) and "other air operations" (¥ 47,671.20). Although the risk scaling

factor has been adjusted to the original data, the liability risk structure under different flight

missions still shows significant differences, reflecting the complexity of accident liability and

uncertainty of compensation brought by the mission itself.

Severity by flight mission type

Table 4

Flight mission
Hull claims

count

Avg. hull

severity

Liability claims

count

Avg. liability

severity

Personal use 31307 36243.38 17652 71278.86

Other air operations 1079 36189.39 639 47671.20

Teaching 4524 37697.65 1963 103685.13

Figure 3 Scaled hull insurance severity distribution (by flight mission)



Figure 4 Scaled liability insurance severity distribution (by flight mission)
According to the analysis, we can find that the risk scaling matrix has a significant effect in

reducing the systematic bias, while still retaining the risk structure differences brought by the

flight mission category, indicating that the use of calibrated manned data for modeling has good

interpretability and generalization. This result verifies the rationality of cross-platform data

integration and lays a solid empirical foundation for the next stage of frequency-severity

decomposition modeling.

4.3 Pure premium determination: SPG method and NCD factor adjustment
In this study, the traditional frequency-severity decomposition (SPG) method was used to

determine the net premium:

Among， is Is the net premium for the task of type I, as frequency (loss probability)

， as the mean severity. The loss rates of each task category are shown in the table below:

The loss rates of each task category
Table 5

Flight mission Hull loss rate Liability loss rate

Personal use 0.0700 0.0050
Teaching 0.1155 0.0120
Other air operations 0.2100 0.0300

Based on the above modeling results of frequency and severity, the pure premium

structures of task categories are constructed respectively, and the simulation values are used to

assist the tail correction. As an important adjustment mechanism for liability insurance, the

NCD system defines the following discount factors:

（15）

（16）



Among It indicates the discount multiples of liability insurance corresponding to

different compensation records, which can be designed as a five-level system: 0 compensation

for three consecutive years to enjoy the maximum discount, 1 compensation to restore the

original price, 2 compensation to rise, etc.

4.4 Conversion Factor Setting

Define the risk adjustment factors for each type of mission ，to reflect the degree of

deviation from the standard compensation Denote：

represents the mission purpose; is the original compensation; is the converted

compensation.

Then, the conversion formula is:

Where and are the risk adjustment factors for hull insurance and liability insurance

respectively, and they are taken from the following table:

The hull insurance adjustment factor and the liability insurance adjustment factor

Table 6

Type of flight mission
Hull insurance

adjustment factor

Liability insurance

adjustment factor

PERS 1.0 1.0

INST 1.1 1.2

OTHER_MANNED_PURPOSE 1.0 1.0

The matrix is derived from the actual flight behavior risk assessment results and is used to

scale the compensation value item by item in the simulation. The coefficient results can be

understood as follows: the liability risk adjustment coefficient of INST for teaching tasks is 1.2,

indicating that the average personal injury compensation is significantly higher than that of

other tasks. Airframe insurance also rises by 10% in the INST scenario, reflecting that it is more

prone to damage in intensive take-off and landing and multi-person operations.

The core role of conversion factors is to introduce an adjustment layer that is closely

related to the use case, so that the source data can still be effectively modeled without sufficient

direct drone historical compensation. The operation complexity, environmental interference

level and responsibility division system corresponding to different flight missions are different,

and the introduction of conversion factors ensures the reflection of the rate results to reality, and

leaves room for parameterization of the model to other UAV types.

4.5 Tweedie GLMmodel and adjustment factor analysis
In order to further improve the prediction ability and interpretation of the UAV insurance

pure premium model, the Tweedie generalized linear model (GLM) is introduced to model the

（17）
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total payout. The Tweedie distribution has both Poisson and gamma distribution characteristics,

which is suitable for modeling a large number of insurance data with both zero and continuous

positive claims, and is widely used in actuarial and non-life insurance modeling.

The Tweedie GLMmodel used in this study is set up as follows:

where xrepresents the total amount of claims of a single policy, and log (exposure) is

the bias item, correcting the difference in the coverage period.

4.6Analysis of pure premium structure and differences in task types
To validate the rationality of the rate-making results, this study calculates and visualizes

the pure premiums for different flight mission types based on the claim frequency and severity

models generated through Monte Carlo simulation.

Figure 5 Comparison of the pure premium compositionfor different flight missions

Figure 6 Comparison of total pure premiums for different flight missions
As illustrated in the figure, the pure premium levels for hull insurance and liability

insurance of personal-use drones are relatively comparable, with hull insurance being slightly

（19）



higher than liability coverage. This indicates that the primary risk exposure for personal users

concentrates on physical damage to the aircraft. In contrast, training missions demonstrate

significantly elevated pure premiums, particularly for hull coverage, which directly correlates

with the frequent maneuver practices and intensive operational demands characteristic of

instructional flights. For commercial operations (such as surveying, inspection, and other aerial

work tasks), the total pure premium reaches the highest level, with liability insurance

accounting for over 60% of the total. This reflects substantially higher third-party risk exposure

in these professional applications. The study further reveals a clear gradient in total pure

premiums across mission categories: Personal Use < Training < Commercial Operations This

finding exhibits strong consistency with the risk factor estimations derived from the Tweedie

GLM model in earlier analysis, both validating the critical role of mission type in UAV

insurance pricing and underscoring the necessity of stratified premium calculation.

5. Summary and Optimization Recommendations
This study developed a pure premium rating model for drone insurance, integrating both

frequency-severity decomposition and Tweedie GLM modeling approaches while incorporating

novel factors such as No Claims Discount (NCD) systems and operator behavior characteristics.

The results demonstrate that the proposed model achieves a balance between interpretability and

predictive accuracy, providing an actuarial pricing tool for the emerging drone insurance market.

However, from an academic perspective, there remains room for improvement in the model's

robustness and practical applicability.

Regarding modeling methodology, both the two-part frequency-severity model and

Tweedie GLM have respective advantages and limitations. The two-part model separately

models claim frequency and loss severity, enabling independent quantification of risk factors'

impacts on claim probability and loss magnitude, with Generalized Pareto Distribution (GPD)

enhancing extreme loss tail risk capture. However, it requires fitting multiple sub-models,

making the process more complex. In contrast, Tweedie GLM simultaneously models zero

claims and positive losses through a single model structure, offering simplicity and

computational efficiency. Yet its distributional assumptions show limitations in fitting extreme

heavy-tailed losses, and the blending of frequency and severity effects reduces interpretability.

Thus, the two-part model excels in interpretability, while Tweedie GLM demonstrates superior

advantages in modeling simplicity and overall loss prediction. Although GPD tail fitting

improves extreme loss capture, threshold selection sensitivity remains an issue, suggesting

future exploration of adaptive threshold techniques to enhance robustness.

The incorporation of operator behavior factors quantifies the impact of "soft" risk elements

like novice pilots on claims, addressing a gap in traditional models' consideration of human

factors. However, measurement and data acquisition for these factors present challenges, with

their effectiveness constrained by data quality. Task-type risk stratification effectively



differentiates risk levels across mission categories, producing premium gradients that generally

align with actual risk exposure. Nevertheless, the current broad classification of task types fails

to fully capture internal risk variations, indicating potential refinements through more granular

categorization or additional features to improve risk differentiation.
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